Your browser doesn't support javascript.
loading
Distinct cellular states determine calcium signaling response.
Yao, Jason; Pilko, Anna; Wollman, Roy.
Afiliação
  • Yao J; Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA.
  • Pilko A; Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA.
  • Wollman R; Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA rwollman@ucsd.edu.
Mol Syst Biol ; 12(12): 894, 2016 Dec 15.
Article em En | MEDLINE | ID: mdl-27979909
ABSTRACT
The heterogeneity in mammalian cells signaling response is largely a result of pre-existing cell-to-cell variability. It is unknown whether cell-to-cell variability rises from biochemical stochastic fluctuations or distinct cellular states. Here, we utilize calcium response to adenosine trisphosphate as a model for investigating the structure of heterogeneity within a population of cells and analyze whether distinct cellular response states coexist. We use a functional definition of cellular state that is based on a mechanistic dynamical systems model of calcium signaling. Using Bayesian parameter inference, we obtain high confidence parameter value distributions for several hundred cells, each fitted individually. Clustering the inferred parameter distributions revealed three major distinct cellular states within the population. The existence of distinct cellular states raises the possibility that the observed variability in response is a result of structured heterogeneity between cells. The inferred parameter distribution predicts, and experiments confirm that variability in IP3R response explains the majority of calcium heterogeneity. Our work shows how mechanistic models and single-cell parameter fitting can uncover hidden population structure and demonstrate the need for parameter inference at the single-cell level.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trifosfato de Adenosina / Sinalização do Cálcio / Análise de Célula Única Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Syst Biol Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trifosfato de Adenosina / Sinalização do Cálcio / Análise de Célula Única Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Syst Biol Ano de publicação: 2016 Tipo de documento: Article