Your browser doesn't support javascript.
loading
A Novel Mouse Model of Staphylococcus aureus Vascular Graft Infection: Noninvasive Imaging of Biofilm Development in Vivo.
Van de Vyver, Hélène; Bovenkamp, Philipp R; Hoerr, Verena; Schwegmann, Katrin; Tuchscherr, Lorena; Niemann, Silke; Kursawe, Laura; Grosse, Christina; Moter, Annette; Hansen, Uwe; Neugebauer, Ute; Kuhlmann, Michael T; Peters, Georg; Hermann, Sven; Löffler, Bettina.
Afiliação
  • Van de Vyver H; Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany. Electronic address: helene.vandevyver@uni-muenster.de.
  • Bovenkamp PR; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany.
  • Hoerr V; Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
  • Schwegmann K; European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany.
  • Tuchscherr L; Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
  • Niemann S; Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany.
  • Kursawe L; Biofilmcenter, German Heart Institute Berlin, Berlin, Germany.
  • Grosse C; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany.
  • Moter A; Biofilmcenter, German Heart Institute Berlin, Berlin, Germany.
  • Hansen U; Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany.
  • Neugebauer U; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany; Institute of Physical Chemistry, University of Jena, Jena, Germany.
  • Kuhlmann MT; European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany.
  • Peters G; Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
  • Hermann S; European Institute for Molecular Imaging, University Hospital Muenster, Muenster, Germany.
  • Löffler B; Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
Am J Pathol ; 187(2): 268-279, 2017 Feb.
Article em En | MEDLINE | ID: mdl-28088288
ABSTRACT
Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and 18F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Biofilmes / Modelos Animais de Doenças / Infecções Relacionadas a Cateter Limite: Animals Idioma: En Revista: Am J Pathol Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Biofilmes / Modelos Animais de Doenças / Infecções Relacionadas a Cateter Limite: Animals Idioma: En Revista: Am J Pathol Ano de publicação: 2017 Tipo de documento: Article