Anomalous Heating and Plasmoid Formation in a Driven Magnetic Reconnection Experiment.
Phys Rev Lett
; 118(8): 085001, 2017 Feb 24.
Article
em En
| MEDLINE
| ID: mdl-28282176
We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields (B=3 T), advected by supersonic, sub-Alfvénic carbon plasma flows (V_{in}=50 km/s), are brought together and mutually annihilate inside a thin current layer (δ=0.6 mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging, and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows, and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures (T_{e}=100 eV, T_{i}=600 eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, consistent with the predictions from semicollisional plasmoid theory.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2017
Tipo de documento:
Article