Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway.
Biomed Pharmacother
; 90: 268-277, 2017 Jun.
Article
em En
| MEDLINE
| ID: mdl-28364599
Diabetes mellitus has spread over the world with 347 million people affected. Insulin resistance is a main pathogenic event in Type 2 Diabetes Mellitus (T2DM) leading to a reduction in glucose uptake by peripheral tissue and increased hepatic glucose output. In this study, we have isolated four flavonoid rich fractions fraction A (FA), fraction B (FB), fraction C (FC) and fraction D (FD) from Enicostema littorale. All the fractions were preliminary screened for TLC fingerprinting, total flavonoid content. Total eight flavonoids were identified by LC/MS. Insulin resistant HepG2 (IR/HepG2) model was established by inducing insulin resistance in HepG2 cells to investigate the effect of these fractions on IR/HepG2 cell line for their glucose uptake. The results showed the significant dose dependant increase in glucose uptake of cells treated with FD. It showed significant activity at a concentration of 10µg/ml. The LC/MS results of FD demonstrated the presence of C-glycoside Swertisin which could be responsible for the effect. Further, to investigate the mechanism of action, gene expression for insulin receptor substrate 1 (IRS-1), protein kinase B (Akt-2) and glucose transporter 4 (GLUT-4) genes were evaluated by real time PCR. A significant upregulation of these genes was observed in FD treated samples, thereby indicating the enhancement of glucose uptake rate of cells via IRS-1/PI3K/Akt pathway.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Flavonoides
/
Resistência à Insulina
/
Fosfatidilinositol 3-Quinases
/
Gentianaceae
/
Proteínas Proto-Oncogênicas c-akt
/
Proteínas Substratos do Receptor de Insulina
/
Glucose
Limite:
Humans
Idioma:
En
Revista:
Biomed Pharmacother
Ano de publicação:
2017
Tipo de documento:
Article