Your browser doesn't support javascript.
loading
The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple.
Zhou, Li-Jie; Li, Yuan-Yuan; Zhang, Rui-Fen; Zhang, Chun-Ling; Xie, Xing-Bin; Zhao, Cheng; Hao, Yu-Jin.
Afiliação
  • Zhou LJ; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Li YY; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Zhang RF; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Zhang CL; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Xie XB; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Zhao C; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
  • Hao YJ; State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
Plant Cell Environ ; 40(10): 2068-2080, 2017 Oct.
Article em En | MEDLINE | ID: mdl-28440563
MdMYB1 acts as a crucial component of the MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis in red-skinned apples (Malus domestica), but little is known about its post-translational regulation. Here, a small ubiquitin-like modifier E3 ligase MdSIZ1 was screened out as an MdMYB1-interacting protein with a yeast two-hybridization approach. The interaction between MdSIZ1 and MdMYB1 was further verified with pull-down and CoIP assays. Furthermore, it was found that MdSIZ1 directly sumoylated MdMYB1 proteins in vivo and in vitro, especially under moderately low temperature (17 °C) conditions, and that this sumoylation was required for MdMYB1 protein stability. Moreover, the transcription level of MdSIZ1 gene was remarkably induced by low temperature and phosphorus deficiency, and MdSIZ1 overexpression exerted a large positive influence on anthocyanin accumulation and red fruit coloration, suggesting its important role in the regulation of anthocyanin biosynthesis under stress conditions. Our findings reveal an important role for a small ubiquitin-like modifier modification of MYB transcription factors in regulation of anthocyanin biosynthesis in plants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Temperatura Baixa / Malus / Ubiquitina-Proteína Ligases / Sumoilação / Antocianinas Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Cell Environ Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Temperatura Baixa / Malus / Ubiquitina-Proteína Ligases / Sumoilação / Antocianinas Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Cell Environ Ano de publicação: 2017 Tipo de documento: Article