Your browser doesn't support javascript.
loading
Technical Note: Transconvolution based equalization of positron energy effects for the use of 68 Ge/68 Ga phantoms in determining 18 F PET recovery.
Prenosil, George A; Hentschel, Michael; Fürstner, Markus; Krause, Thomas; Weitzel, Thilo; Klaeser, Bernd.
Afiliação
  • Prenosil GA; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Hentschel M; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Fürstner M; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Krause T; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Weitzel T; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Klaeser B; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
Med Phys ; 44(7): 3761-3766, 2017 Jul.
Article em En | MEDLINE | ID: mdl-28494090
ABSTRACT

PURPOSE:

Avoiding measurement variability from 18 F phantom preparation by using 68 Ge/68 Ga phantoms for the determination of 18 F recovery curves (RC) in clinical quality assurance measurements and for PET/CT site qualification in multicentre clinical trials.

METHODS:

RCs were obtained from PET/CT measurements of seven differently sized phantom spheres filled either with 18 F or with 68 Ga. RCs for the respective other isotope were then determined by two different

methods:

In the first method, images were convolved with positron range transconvolution functions derived from positron annihilation distributions found in literature. This method generated recasted images matching images using the respective other isotope. In the second method, the PET/CT system's isotope independent (intrinsic) point spread function was determined from said phantom measurements and convolved with numerical representations simulating hot spheres filled with the respective other isotope. These simulations included the isotope specific positron annihilation distributions. Recovered activity concentrations were compared between recasted images, simulated images, and the originally acquired images.

RESULTS:

18 F and 68 Ga recovery was successfully determined from image acquisitions of the respective opposite isotope as well as from the simulations. 68 Ga RCs derived from 18 F data had a normalized root-mean-square deviation (NRMSD) from real 68 Ga measurements of 0.019% when using the first method and of 0.008% when using the second method. 18 F RCs derived from 68 Ga data had a NRMSD from real 18 F measurements of 0.036% when using the first method and of 0.038% when using the second method.

CONCLUSIONS:

Applying the principles of transconvolution, 18 F RCs can be recalculated from 68 Ga phantom measurements with excellent accuracy. The maximal additionally introduced error was below 0.4% of the error currently accepted for RCs in the site qualification of multicentre clinical trials by the EARL program of the European Association of Nuclear Medicine (EANM). Therefore, our methods legitimately allow for the use of long-lived solid state 68 Ge/68 Ga phantoms instead of manually prepared 18 F phantoms to characterize comparability of 18 F measurements across different imaging sites or of longitudinal 18 F measurements at a single PET/CT system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagens de Fantasmas / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Limite: Humans Idioma: En Revista: Med Phys Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagens de Fantasmas / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Limite: Humans Idioma: En Revista: Med Phys Ano de publicação: 2017 Tipo de documento: Article