Your browser doesn't support javascript.
loading
Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae.
Oh, Eun Joong; Kwak, Suryang; Kim, Heejin; Jin, Yong-Su.
Afiliação
  • Oh EJ; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
  • Kwak S; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
  • Kim H; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
  • Jin YS; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address: ysjin@illinois.edu.
Bioresour Technol ; 245(Pt B): 1469-1475, 2017 Dec.
Article em En | MEDLINE | ID: mdl-28583406
The aim of this study was to engineer cellodextrin transporter 2 (CDT-2) from Neurospora crassa for improved cellobiose fermentation under lower pH conditions by Saccharomyces cerevisiae. Through directed evolution, a mutant CDT-2 capable of facilitating cellobiose fermentation under lower pH conditions was obtained. Specifically, a library of CDT-2 mutants with GFP fusion was screened by flow cytometry and then serial subcultured to isolate a CDT-2 mutant capable of transporting cellobiose under acidic conditions. The engineered S. cerevisiae expressing the isolated mutant CDT-2 (I96N/T487A) produced ethanol with a specific cellobiose consumption rate of 0.069g/gcell/h, which was 51% and 55% higher than those of the strains harboring wild-type CDT-1 and CDT-2 in a minimal medium with 2g/L of acetic acid.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Celobiose Idioma: En Revista: Bioresour Technol Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Celobiose Idioma: En Revista: Bioresour Technol Ano de publicação: 2017 Tipo de documento: Article