Quantum annealing with all-to-all connected nonlinear oscillators.
Nat Commun
; 8: 15785, 2017 06 08.
Article
em En
| MEDLINE
| ID: mdl-28593952
Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Ano de publicação:
2017
Tipo de documento:
Article