A Combined One-Class SVM and Template-Matching Approach for User-Aided Human Fall Detection by Means of Floor Acoustic Features.
Comput Intell Neurosci
; 2017: 1512670, 2017.
Article
em En
| MEDLINE
| ID: mdl-28638405
The primary cause of injury-related death for the elders is represented by falls. The scientific community devoted them particular attention, since injuries can be limited by an early detection of the event. The solution proposed in this paper is based on a combined One-Class SVM (OCSVM) and template-matching classifier that discriminate human falls from nonfalls in a semisupervised framework. Acoustic signals are captured by means of a Floor Acoustic Sensor; then Mel-Frequency Cepstral Coefficients and Gaussian Mean Supervectors (GMSs) are extracted for the fall/nonfall discrimination. Here we propose a single-sensor two-stage user-aided approach: in the first stage, the OCSVM detects abnormal acoustic events. In the second, the template-matching classifier produces the final decision exploiting a set of template GMSs related to the events marked as false positives by the user. The performance of the algorithm has been evaluated on a corpus containing human falls and nonfall sounds. Compared to the OCSVM only approach, the proposed algorithm improves the performance by 10.14% in clean conditions and 4.84% in noisy conditions. Compared to Popescu and Mahnot (2009) the performance improvement is 19.96% in clean conditions and 8.08% in noisy conditions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Acústica
/
Acidentes por Quedas
/
Algoritmos
/
Máquina de Vetores de Suporte
Tipo de estudo:
Diagnostic_studies
/
Screening_studies
Limite:
Aged
/
Humans
Idioma:
En
Revista:
Comput Intell Neurosci
Ano de publicação:
2017
Tipo de documento:
Article