Your browser doesn't support javascript.
loading
Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors.
Liu, Sha; Ji, Sen; Yu, Zhu-Jun; Wang, Hua-Li; Cheng, Xu; Li, Wei-Jian; Jing, Li; Yu, Yamei; Chen, Qiang; Yang, Ling-Ling; Li, Guo-Bo; Wu, Yong.
Afiliação
  • Liu S; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Ji S; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Yu ZJ; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Wang HL; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Cheng X; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Li WJ; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Jing L; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Yu Y; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Chen Q; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Yang LL; College of Food and Bioengineering, Xihua University, Sichuan, China.
  • Li GB; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
  • Wu Y; Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, and Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
Chem Biol Drug Des ; 91(1): 257-268, 2018 01.
Article em En | MEDLINE | ID: mdl-28756638
Human sirtuin 5 (SIRT5) is a protein deacylase regulating metabolic pathways and stress responses and is implicated in metabolism-related diseases. Small-molecule inhibitors for SIRT5 are sought as chemical tools and potential therapeutics. Herein, we proposed a customized virtual screening approach targeting catalytically important and unique residues Tyr102 and Arg105 of SIRT5. Of the 20 tested virtual screening hits, six compounds displayed marked inhibitory activities against SIRT5. For the hit compound 19, a series of newly synthesized (E)-2-cyano-N-phenyl-3-(5-phenylfuran-2-yl)acrylamide derivatives/analogues were carried out structure-activity relationship analyses, resulting in new more potent inhibitors, among which 37 displayed the most potent inhibition to SIRT5 with an IC50 value of 5.59 ± 0.75 µM. The biochemical studies revealed that 37 likely acts via competitive inhibition with the succinyl-lysine substrate, rather than the NAD+ cofactor, and it manifested substantial selectivity for SIRT5 over SIRT2 and SIRT6. This study will aid further efforts to develop new selective SIRT5 inhibitors as tools and therapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acrilamidas / Sirtuínas Limite: Humans Idioma: En Revista: Chem Biol Drug Des Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acrilamidas / Sirtuínas Limite: Humans Idioma: En Revista: Chem Biol Drug Des Ano de publicação: 2018 Tipo de documento: Article