Your browser doesn't support javascript.
loading
Enhanced vibrational solvatochromism and spectral diffusion by electron rich substituents on small molecule silanes.
Olson, Courtney M; Grofe, Adam; Huber, Christopher J; Spector, Ivan C; Gao, Jiali; Massari, Aaron M.
Afiliação
  • Olson CM; Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
  • Grofe A; Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
  • Huber CJ; Doane University, 1014 Boswell Avenue, Crete, Nebraska 68333, USA.
  • Spector IC; Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
  • Gao J; Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
  • Massari AM; Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA.
J Chem Phys ; 147(12): 124302, 2017 Sep 28.
Article em En | MEDLINE | ID: mdl-28964044
ABSTRACT
Fourier transform infrared and two-dimensional IR (2D-IR) spectroscopies were applied to two different silanes in three different solvents. The selected solutes exhibit different degrees of vibrational solvatochromism for the Si-H vibration. Density functional theory calculations confirm that this difference in sensitivity is the result of higher mode polarization with more electron withdrawing ligands. This mode sensitivity also affects the extent of spectral diffusion experienced by the silane vibration, offering a potential route to simultaneously optimize the sensitivity of vibrational probes in both steady-state and time-resolved measurements. Frequency-frequency correlation functions obtained by 2D-IR show that both solutes experience dynamics on similar time scales and are consistent with a picture in which weakly interacting solvents produce faster, more homogeneous fluctuations. Molecular dynamics simulations confirm that the frequency-frequency correlation function obtained by 2D-IR is sensitive to the presence of hydrogen bonding dynamics in the surrounding solvation shell.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article