Your browser doesn't support javascript.
loading
Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.
Opt Express ; 25(18): 21583-21593, 2017 Sep 04.
Article em En | MEDLINE | ID: mdl-29041455
ABSTRACT
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 1023 W/cm2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 1024 photons s-1mm-2mrad-2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e-e+ pair bunches are produced with the positron energy density as high as 1017 J/m3 and number of 109. Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Ano de publicação: 2017 Tipo de documento: Article