Your browser doesn't support javascript.
loading
miR-20a Regulates FAS Expression in Osteosarcoma Cells by Modulating FAS Promoter Activity and Can be Therapeutically Targeted to Inhibit Lung Metastases.
Yang, Yuanzheng; Huang, Gangxiong; Zhou, Zhichao; Fewell, Jason G; Kleinerman, Eugenie S.
Afiliação
  • Yang Y; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  • Huang G; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  • Zhou Z; Immunotherapy Institute, Fujian Medical University, University Town, Fuzhou, China.
  • Fewell JG; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  • Kleinerman ES; Celsion Corporation, Huntsville, Alabama.
Mol Cancer Ther ; 17(1): 130-139, 2018 01.
Article em En | MEDLINE | ID: mdl-29079708
ABSTRACT
The metastatic potential of osteosarcoma cells is inversely correlated to cell surface FAS expression. Downregulation of FAS allows osteosarcoma cells to escape FAS ligand-mediated apoptosis when they enter a FAS ligand-positive microenvironment such as the lung. We have previously demonstrated that miR-20a, encoded by the miR-17-92 cluster, downregulates FAS expression in osteosarcoma. We further demonstrated an inverse correlation between FAS expression and miR-20a expression. However, the mechanism of FAS regulation by miR-20a was still unclear. The purpose of the current study was to evaluate the mechanism of FAS regulation by miR-20a in vitro and test the effect of targeting miR-20a in vivo We investigated whether miR-20a's downregulation of FAS was mediated by binding to the 3'-untranslated region (3'-UTR) of FAS mRNA with the consequent induction of mRNA degradation or translational suppression. We identified and mutated two miR-20a binding sites on the FAS mRNA 3'-UTR. Using luciferase reporter assays, we demonstrated that miR-20a did not bind to either the wild-type or mutated FAS 3'-UTR. In contrast, overexpression of miR-20a resulted in downregulation of FAS promoter activity. Similarly, the inhibition of miR-20a increased FAS promoter activity. The critical region identified on the FAS promoter was between -240 bp and -150 bp. Delivery of anti-miR-20a in vivo using nanoparticles in mice with established osteosarcoma lung metastases resulted in upregulation of FAS and tumor growth inhibition. Taken together, our data suggest that miR-20a regulates FAS expression through the modulation of the FAS promoter and that targeting miR-20a using anti-miR-20a has therapeutic potential. Mol Cancer Ther; 17(1); 130-9. ©2017 AACR.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteossarcoma / Receptor fas / MicroRNAs / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Ther Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteossarcoma / Receptor fas / MicroRNAs / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Ther Ano de publicação: 2018 Tipo de documento: Article