Your browser doesn't support javascript.
loading
HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics.
Vitali, Cecilia; Khetarpal, Sumeet A; Rader, Daniel J.
Afiliação
  • Vitali C; Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Khetarpal SA; Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
  • Rader DJ; Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA. rader@mail.med.upenn.edu.
Curr Cardiol Rep ; 19(12): 132, 2017 11 04.
Article em En | MEDLINE | ID: mdl-29103089
PURPOSE OF REVIEW: Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS: Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença das Coronárias / Predisposição Genética para Doença / HDL-Colesterol Tipo de estudo: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Curr Cardiol Rep Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença das Coronárias / Predisposição Genética para Doença / HDL-Colesterol Tipo de estudo: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Curr Cardiol Rep Ano de publicação: 2017 Tipo de documento: Article