Your browser doesn't support javascript.
loading
Ornithine decarboxylase as a therapeutic target for endometrial cancer.
Kim, Hong Im; Schultz, Chad R; Buras, Andrea L; Friedman, Elizabeth; Fedorko, Alyssa; Seamon, Leigh; Chandramouli, Gadisetti V R; Maxwell, G Larry; Bachmann, André S; Risinger, John I.
Afiliação
  • Kim HI; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America.
  • Schultz CR; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan, United States of America.
  • Buras AL; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America.
  • Friedman E; Spectrum Health, Grand Rapids, Michigan, United States of America.
  • Fedorko A; Spectrum Health, Grand Rapids, Michigan, United States of America.
  • Seamon L; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America.
  • Chandramouli GVR; Spectrum Health, Grand Rapids, Michigan, United States of America.
  • Maxwell GL; Spectrum Health, Grand Rapids, Michigan, United States of America.
  • Bachmann AS; Genepria Consulting, Columbia, Maryland, United States of America.
  • Risinger JI; Department of Obsteterics and Gynecology, Inova Fairfax Women's Hospital, Falls Church, Virginia, United States of America.
PLoS One ; 12(12): e0189044, 2017.
Article em En | MEDLINE | ID: mdl-29240775
ABSTRACT
Ornithine Decarboxylase (ODC) a key enzyme in polyamine biosynthesis is often overexpressed in cancers and contributes to polyamine-induced cell proliferation. We noted ubiquitous expression of ODC1 in our published endometrial cancer gene array data and confirmed this in the cancer genome atlas (TCGA) with highest expression in non-endometrioid, high grade, and copy number high cancers, which have the worst clinical outcomes. ODC1 expression was associated with worse overall survival and increased recurrence in three endometrial cancer gene expression datasets. Importantly, we confirmed these findings using quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort of 60 endometrial cancers and found that endometrial cancers with elevated ODC1 had significantly shorter recurrence-free intervals (KM log-rank p = 0.0312, Wald test p = 5.59e-05). Difluoromethylornithine (DFMO) a specific inhibitor of ODC significantly reduced cell proliferation, cell viability, and colony formation in cell line models derived from undifferentiated, endometrioid, serous, carcinosarcoma (mixed mesodermal tumor; MMT) and clear cell endometrial cancers. DFMO also significantly reduced human endometrial cancer ACI-98 tumor burden in mice compared to controls (p = 0.0023). ODC-regulated polyamines (putrescine [Put] and/or spermidine [Spd]) known activators of cell proliferation were strongly decreased in response to DFMO, in both tumor tissue ([Put] (p = 0.0006), [Spd] (p<0.0001)) and blood plasma ([Put] (p<0.0001), [Spd] (p = 0.0049)) of treated mice. Our study indicates that some endometrial cancers appear particularly sensitive to DFMO and that the polyamine pathway in endometrial cancers in general and specifically those most likely to suffer adverse clinical outcomes could be targeted for effective treatment, chemoprevention or chemoprevention of recurrence.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ornitina Descarboxilase / Neoplasias do Endométrio Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: PLoS One Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ornitina Descarboxilase / Neoplasias do Endométrio Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: PLoS One Ano de publicação: 2017 Tipo de documento: Article