Your browser doesn't support javascript.
loading
Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors.
Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe.
Afiliação
  • Wang Z; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Cao F; School of Mechatronic Engineering, Daqing Normal University, Daqing, Heilongjiang, 163712, PR China.
  • Chen K; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
  • Yan Y; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Chen Y; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Zhang Y; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Zhu X; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Wei B; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
  • Xiong Y; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150001, PR China.
  • Lv Z; Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang, 150001, PR China.
ChemSusChem ; 11(5): 985-993, 2018 03 09.
Article em En | MEDLINE | ID: mdl-29319239
ABSTRACT
Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H2 , CO, and O2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Capacitância Elétrica / Condutividade Elétrica / Incêndios / Níquel Tipo de estudo: Health_economic_evaluation Idioma: En Revista: ChemSusChem Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Capacitância Elétrica / Condutividade Elétrica / Incêndios / Níquel Tipo de estudo: Health_economic_evaluation Idioma: En Revista: ChemSusChem Ano de publicação: 2018 Tipo de documento: Article