Your browser doesn't support javascript.
loading
Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera).
Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang.
Afiliação
  • Hu Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Li Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Hou F; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Wan D; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Cheng Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Han Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Gao Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Liu J; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Guo Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Xiao S; Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA.
  • Wang Y; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Wen YQ; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China. Ele
Plant Sci ; 267: 20-31, 2018 Feb.
Article em En | MEDLINE | ID: mdl-29362096
ABSTRACT
Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35SRPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H2O2. In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Ascomicetos / Arabidopsis / Vitis / Proteínas de Arabidopsis / Resistência à Doença / Expressão Ectópica do Gene Idioma: En Revista: Plant Sci Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Ascomicetos / Arabidopsis / Vitis / Proteínas de Arabidopsis / Resistência à Doença / Expressão Ectópica do Gene Idioma: En Revista: Plant Sci Ano de publicação: 2018 Tipo de documento: Article