Your browser doesn't support javascript.
loading
Rox, a Rifamycin Resistance Enzyme with an Unprecedented Mechanism of Action.
Koteva, Kalinka; Cox, Georgina; Kelso, Jayne K; Surette, Matthew D; Zubyk, Haley L; Ejim, Linda; Stogios, Peter; Savchenko, Alexei; Sørensen, Dan; Wright, Gerard D.
Afiliação
  • Koteva K; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Cox G; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Kelso JK; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Surette MD; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Zubyk HL; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Ejim L; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
  • Stogios P; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1L6, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Savchenko A; Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Sørensen D; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada.
  • Wright GD; M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada. Electronic address: wrightge@mcmaster.ca.
Cell Chem Biol ; 25(4): 403-412.e5, 2018 04 19.
Article em En | MEDLINE | ID: mdl-29398560
Rifamycin monooxygenases (Rox) are present in a variety of environmental bacteria and are associated with decomposition of the clinically utilized antibiotic rifampin. Here we report the structure and function of a drug-inducible rox gene from Streptomyces venezuelae, which encodes a class A flavoprotein monooxygenase that inactivates a broad range of rifamycin antibiotics. Our findings describe a mechanism of rifamycin inactivation initiated by monooxygenation of the 2-position of the naphthyl group, which subsequently results in ring opening and linearization of the antibiotic. The result is an antibiotic that no longer adopts the basket-like structure essential for binding to the RNA exit tunnel of the target RpoB, thereby providing the molecular logic of resistance. This unique mechanism of enzymatic inactivation underpins the broad spectrum of rifamycin resistance mediated by Rox enzymes and presents a new antibiotic resistance mechanism not yet seen in microbial antibiotic detoxification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rifamicinas / Streptomyces / Proteínas de Bactérias / Farmacorresistência Bacteriana / Oxigenases de Função Mista / Antibacterianos Idioma: En Revista: Cell Chem Biol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rifamicinas / Streptomyces / Proteínas de Bactérias / Farmacorresistência Bacteriana / Oxigenases de Função Mista / Antibacterianos Idioma: En Revista: Cell Chem Biol Ano de publicação: 2018 Tipo de documento: Article