Your browser doesn't support javascript.
loading
Forecasting and Uncertainty Quantification Using a Hybrid of Mechanistic and Non-mechanistic Models for an Age-Structured Population Model.
Lagergren, John; Reeder, Amanda; Hamilton, Franz; Smith, Ralph C; Flores, Kevin B.
Afiliação
  • Lagergren J; Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.
  • Reeder A; Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.
  • Hamilton F; Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.
  • Smith RC; Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA.
  • Flores KB; Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA. kbflores@ncsu.edu.
Bull Math Biol ; 80(6): 1578-1595, 2018 06.
Article em En | MEDLINE | ID: mdl-29611108
In this paper, we present a new method for the prediction and uncertainty quantification of data-driven multivariate systems. Traditionally, either mechanistic or non-mechanistic modeling methodologies have been used for prediction; however, it is uncommon for the two to be incorporated together. We compare the forecast accuracy of mechanistic modeling, using Bayesian inference, a non-mechanistic modeling approach based on state space reconstruction, and a novel hybrid methodology composed of the two for an age-structured population data set. The data come from cannibalistic flour beetles, in which it is observed that the adults preying on the eggs and pupae result in non-equilibrium population dynamics. Uncertainty quantification methods for the hybrid models are outlined and illustrated for these data. We perform an analysis of the results from Bayesian inference for the mechanistic model and hybrid models to suggest reasons why hybrid modeling methodology may enable more accurate forecasts of multivariate systems than traditional approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dinâmica Populacional / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Bull Math Biol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dinâmica Populacional / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Bull Math Biol Ano de publicação: 2018 Tipo de documento: Article