Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes.
Sci Rep
; 8(1): 5896, 2018 04 12.
Article
em En
| MEDLINE
| ID: mdl-29650980
We propose a novel stochastic global optimization algorithm with applications to the refinement stage of protein docking prediction methods. Our approach can process conformations sampled from multiple clusters, each roughly corresponding to a different binding energy funnel. These clusters are obtained using a density-based clustering method. In each cluster, we identify a smooth "permissive" subspace which avoids high-energy barriers and then underestimate the binding energy function using general convex polynomials in this subspace. We use the underestimator to bias sampling towards its global minimum. Sampling and subspace underestimation are repeated several times and the conformations sampled at the last iteration form a refined ensemble. We report computational results on a comprehensive benchmark of 224 protein complexes, establishing that our refined ensemble significantly improves the quality of the conformations of the original set given to the algorithm. We also devise a method to enhance the ensemble from which near-native models are selected.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Receptores de Superfície Celular
/
Enzimas
/
Simulação de Acoplamento Molecular
/
Anticorpos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2018
Tipo de documento:
Article