Your browser doesn't support javascript.
loading
Polymer physics predicts the effects of structural variants on chromatin architecture.
Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario.
Afiliação
  • Bianco S; Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy.
  • Lupiáñez DG; Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.
  • Chiariello AM; Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Annunziatella C; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Kraft K; Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
  • Schöpflin R; Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy.
  • Wittler L; Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy.
  • Andrey G; Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.
  • Vingron M; Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Pombo A; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Mundlos S; Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Nicodemi M; Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.
Nat Genet ; 50(5): 662-667, 2018 05.
Article em En | MEDLINE | ID: mdl-29662163
ABSTRACT
Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Cromatina / Montagem e Desmontagem da Cromatina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Genet Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Cromatina / Montagem e Desmontagem da Cromatina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Genet Ano de publicação: 2018 Tipo de documento: Article