Your browser doesn't support javascript.
loading
Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils.
He, Lili; Bi, Yucui; Zhao, Jin; Pittelkow, Cameron M; Zhao, Xu; Wang, Shenqiang; Xing, Guangxi.
Afiliação
  • He L; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Scienc
  • Bi Y; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Zhao J; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Pittelkow CM; Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
  • Zhao X; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address: zhaoxu@issas.ac.cn.
  • Wang S; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Xing G; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Sci Total Environ ; 619-620: 1105-1115, 2018 Apr 01.
Article em En | MEDLINE | ID: mdl-29734589
Long-term studies that advance our mechanistic understanding of biochar (BC)­nitrogen (N) interactions in agricultural soils are lacking. In this study, soil potential nitrification rates (PNR), the abundance and composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities following 4-year of BC application were investigated using the shaken-slurry procedure and molecular sequencing techniques for an acidic Oxisol (QU) and an alkaline Cambisol (YU). Soils were obtained from an outdoor soil column experiment with straw-BC application rates of 0 (BC0), 2.25 (BC2.25) and 11.3 (BC11.3) Mgha-1 per cropping season for eight consecutive wheat/millet seasons. Quantitative polymerase chain reaction (qPCR) and 454 high-throughput pyrosequencing techniques were performed to quantify and sequence amoA gene copies and composition of AOA and AOB. Results showed that QU had lower PNR and a higher ratio of amoA gene copies of AOA to AOB than YU, PNR of QU with BC application was significantly associated with the amoA gene of AOB. Similar to previous short-term findings, BC application enhanced QU soil nitrification, which may be explained by the significant increase in AOB abundance and a shift in AOB community structure from Nitrosospira cluster 2 toward cluster 3, along with the disappearance of some obligate acidophile AOA groups, leading to the appearance of ammonia-oxidizers from neutral-alkaline soils in BC-amended acid soils. Canonical correspondence analysis (CCA) showed that soil pH was the most important factor driving shifts in ammonia-oxidizers composition. Although BC application did not have significant effects on PNR in YU, BC11.3 decreased AOA and AOB gene copies and influenced the relative abundance of community structure. Our findings represent the first investigation of long-term BC effects on AOA and AOB communities in agricultural soils using 454 high-throughput pyrosequencing, showing that BC application can alter soil characteristics and influence ammonia oxidizer community composition, abundance, especially in acid soils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Carvão Vegetal / Archaea / Amônia Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Carvão Vegetal / Archaea / Amônia Idioma: En Revista: Sci Total Environ Ano de publicação: 2018 Tipo de documento: Article