Your browser doesn't support javascript.
loading
Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for in vitro and in vivo delivery of siRNAs.
Hyun, Soonsil; Choi, Yoonhwa; Lee, Ha Neul; Lee, Changki; Oh, Donghoon; Lee, Dong-Ki; Lee, Changjin; Lee, Yan; Yu, Jaehoon.
Afiliação
  • Hyun S; Institute of Molecular Biology and Genetics , Seoul National University , Seoul 08826 , Korea.
  • Choi Y; Department of Chemistry & Education , Seoul National University , Seoul 08826 , Korea . Email: jhoonyu@snu.ac.kr.
  • Lee HN; Hugel, Inc. , Chuncheon 24206 , Korea . Email: senovia@hugel.co.kr.
  • Lee C; Hugel, Inc. , Chuncheon 24206 , Korea . Email: senovia@hugel.co.kr.
  • Oh D; Hugel, Inc. , Chuncheon 24206 , Korea . Email: senovia@hugel.co.kr.
  • Lee DK; Department of Chemistry , Sungkyunkwan University , Suwon , Korea.
  • Lee C; Hugel, Inc. , Chuncheon 24206 , Korea . Email: senovia@hugel.co.kr.
  • Lee Y; Department of Chemistry , Seoul National University , Seoul 08826 , Korea . Email: gacn@snu.ac.kr.
  • Yu J; Institute of Molecular Biology and Genetics , Seoul National University , Seoul 08826 , Korea.
Chem Sci ; 9(15): 3820-3827, 2018 Apr 21.
Article em En | MEDLINE | ID: mdl-29780514
ABSTRACT
A hydrocarbon stapled peptide based strategy was used to develop an optimized cell penetrating peptide for siRNA delivery. Various stapled peptides, having amphipathic Leu- and Lys-rich regions, were prepared and their cell penetrating potentials were evaluated. One peptide, stEK, was found to have high cell penetration and siRNA delivery abilities at low nanomolar concentrations. In order to improve its ability to promote gene silencing, stEK was modified by replacing several Lys residues with His moieties. The modified peptide, LKH-stEK, was found to facilitate endosomal escape and to display >90% knock-down with 50 nM of a siRNA targeting cyclophilin B in HeLa cells. The results of an in vivo animal wound healing model study demonstrate that LKH-stEK promotes delivery of an siRNA, which targets the connective tissue growth factor, and that this process leads to efficient gene silencing by the siRNA at a nanomolar level in mouse skin.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Chem Sci Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Chem Sci Ano de publicação: 2018 Tipo de documento: Article