Your browser doesn't support javascript.
loading
Metabolism, pharmacokinetics, and hepatic disposition of xanthones and saponins on Zhimu treatments for exploratively interpreting the discrepancy between the herbal safety and timosaponin A3-induced hepatotoxicity.
Xie, Yang; Zhou, Xu; Pei, Hu; Chen, Ming-Cang; Sun, Zhao-Lin; Xue, Ya-Ru; Tian, Xiao-Ting; Huang, Cheng-Gang.
Afiliação
  • Xie Y; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Zhou X; Pharmacy Academy, Harbin University of Commerce, Harbin, 150076, China.
  • Pei H; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Chen MC; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Sun ZL; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Xue YR; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Tian XT; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
  • Huang CG; University of Chinese Academy of Sciences, Beijing, 100049, China.
Acta Pharmacol Sin ; 39(12): 1923-1934, 2018 Dec.
Article em En | MEDLINE | ID: mdl-29795136
ABSTRACT
Timosaponin A3, a saponin in Zhimu, elicited hepatotoxicity via oxidative stress. However, the clinical medication of Zhimu has been historically regarded as safe, probably associated with the antioxidants it contains. However, the related information on the in vivo levels of timosaponin A3 and antioxidants remained unclear on Zhimu treatments. Therefore, a combination of the in vitro metabolism, including microbiota-mediated and liver-mediated metabolism, and in vivo pharmacokinetics and hepatic disposition, was conducted for three xanthones (neomangiferin, mangiferin, and norathyriol) and three saponins (timosaponin B2, timosaponin B3, and timosaponin A3) on Zhimu treatments. Consequently, following oral administration of Zhimu decoction to rats, those saponins and xanthones were all observed in the plasma with severe liver first-pass effect, where mangiferin was of the maximum exposure. Despite the ignorable content in the herb, timosaponin A3 elicited sizable hepatic exposure as the microbiota-mediated metabolite of saponins in Zhimu. The similar phenomenon also occurred to norathyriol, the microbiota-mediated metabolite of xanthones. However, the major prototypes in Zhimu were of limited hepatic exposure. We deduced the hepatic collection of norathyriol, maximum circulating levels of mangiferin, and timosaponin B2 and mangiferin interaction may directly or indirectly contribute to the whole anti-oxidation of Zhimu, and then resisted the timosaponin A3-induced hepatotoxicity. Thus, our study exploratively interpreted the discrepancy between herbal safety and timosaponin A3-induced hepatotoxicity. However, given the considerable levels and slow eliminated rate of timosaponin A3 in the liver, more attention should be paid to the safety on the continuous clinical medication of Zhimu in the future.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saponinas / Esteroides / Medicamentos de Ervas Chinesas / Xantonas / Doença Hepática Induzida por Substâncias e Drogas / Antioxidantes Limite: Animals Idioma: En Revista: Acta Pharmacol Sin Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saponinas / Esteroides / Medicamentos de Ervas Chinesas / Xantonas / Doença Hepática Induzida por Substâncias e Drogas / Antioxidantes Limite: Animals Idioma: En Revista: Acta Pharmacol Sin Ano de publicação: 2018 Tipo de documento: Article