Your browser doesn't support javascript.
loading
Moisture Damage Modeling in Lime and Chemically Modified Asphalt at Nanolevel Using Ensemble Computational Intelligence.
Hassan, M R; Mamun, A Al; Hossain, M I; Arifuzzaman, M.
Afiliação
  • Hassan MR; King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
  • Mamun AA; King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
  • Hossain MI; King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
  • Arifuzzaman M; University of Bahrain, Zallaq, Bahrain.
Comput Intell Neurosci ; 2018: 7525789, 2018.
Article em En | MEDLINE | ID: mdl-29849551
ABSTRACT
This paper measures the adhesion/cohesion force among asphalt molecules at nanoscale level using an Atomic Force Microscopy (AFM) and models the moisture damage by applying state-of-the-art Computational Intelligence (CI) techniques (e.g., artificial neural network (ANN), support vector regression (SVR), and an Adaptive Neuro Fuzzy Inference System (ANFIS)). Various combinations of lime and chemicals as well as dry and wet environments are used to produce different asphalt samples. The parameters that were varied to generate different asphalt samples and measure the corresponding adhesion/cohesion forces are percentage of antistripping agents (e.g., Lime and Unichem), AFM tips K values, and AFM tip types. The CI methods are trained to model the adhesion/cohesion forces given the variation in values of the above parameters. To achieve enhanced performance, the statistical methods such as average, weighted average, and regression of the outputs generated by the CI techniques are used. The experimental results show that, of the three individual CI methods, ANN can model moisture damage to lime- and chemically modified asphalt better than the other two CI techniques for both wet and dry conditions. Moreover, the ensemble of CI along with statistical measurement provides better accuracy than any of the individual CI techniques.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Inteligência Artificial / Água / Compostos de Cálcio / Microscopia de Força Atômica / Hidrocarbonetos Tipo de estudo: Diagnostic_studies Idioma: En Revista: Comput Intell Neurosci Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Inteligência Artificial / Água / Compostos de Cálcio / Microscopia de Força Atômica / Hidrocarbonetos Tipo de estudo: Diagnostic_studies Idioma: En Revista: Comput Intell Neurosci Ano de publicação: 2018 Tipo de documento: Article