Your browser doesn't support javascript.
loading
High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection.
Ahn, Sae Ryun; An, Ji Hyun; Jang, Il Ha; Na, Wonjoo; Yang, Heehong; Cho, Kyung Hee; Lee, Sang Hun; Song, Hyun Seok; Jang, Jyongsik; Park, Tai Hyun.
Afiliação
  • Ahn SR; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea.
  • An JH; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea; Semiconductor R&D Center, Samsung Electronics, Hwaseong, Gyeonggi 18448, Republic of Korea.
  • Jang IH; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea; CJ HealthCare, 811, Deokpyeong-ro, Majang-myeon, Icheon, Gyeonggi 17389, Republic of Korea.
  • Na W; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea.
  • Yang H; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea.
  • Cho KH; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea.
  • Lee SH; Department of Bioengineering, University of California, Berkeley, CA 94720, United States.
  • Song HS; Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea; CEVI, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
  • Jang J; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea. Electronic address: jsjang@plaza.snu.ac.kr.
  • Park TH; School of Chemical and Biological Engineering, Seoul National University, 08826, Republic of Korea. Electronic address: thpark@snu.ac.kr.
Biosens Bioelectron ; 117: 628-636, 2018 Oct 15.
Article em En | MEDLINE | ID: mdl-30005383
ABSTRACT
Numerous efforts have been made to measure tastes for various purposes. However, most taste information is still obtained by human sensory evaluation. It is difficult to quantify a degree of taste or establish taste standard. Although artificial taste sensors called electronic tongues utilizing synthetic materials such as polymers, semiconductors, or lipid membranes have been developed, they have limited performance due to their low sensitivity and specificity. Recently, bioelectronic tongues fabricated by integrating human taste receptors and nanomaterial-based sensor platforms have been found to have high performance for measuring tastes with human-like taste perception. However, human umami taste receptor is heterodimeric class C GPCR composed of human taste receptor type 1 member 1 (T1R1) and member 3 (T1R3). Such complicated structure makes it difficult to fabricate bioelectronic tongue. The objective of this study was to develop a protein-based bioelectronic tongue for detecting and discriminating umami taste with human-like performance using umami ligand binding domain called venus flytrap (VFT) domain originating from T1R1 instead of using the whole heterodimeric complex of receptors. Such T1R1 VFT was produced from Escherichia coli (E. coli) with purification and refolding process. It was then immobilized onto graphene-based FET. This bioelectronic tongue for umami taste (BTUT) was able to detect monosodium L-glutamate (MSG) with high sensitivity (ca. 1 nM) and specificity in real-time. The intensity of umami taste was enhanced by inosine monophosphate (IMP) that is very similar to the human taste system. In addition, BTUT allowed efficient reusable property and storage stability. It maintained 90% of normalized signal intensity for five weeks. To develop bioelectronic tongue, this approach using the ligand binding domain of human taste receptor rather than the whole heterodimeric GPCRs has advantages in mass production, reusability, and stability. It also has great potential for various industrial applications such as food, beverage, and pharmaceutical fields.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Receptores Acoplados a Proteínas G / Técnicas Eletroquímicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Biosens Bioelectron Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Receptores Acoplados a Proteínas G / Técnicas Eletroquímicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Biosens Bioelectron Ano de publicação: 2018 Tipo de documento: Article