Your browser doesn't support javascript.
loading
Metagenomic mining of regulatory elements enables programmable species-selective gene expression.
Johns, Nathan I; Gomes, Antonio L C; Yim, Sung Sun; Yang, Anthony; Blazejewski, Tomasz; Smillie, Christopher S; Smith, Mark B; Alm, Eric J; Kosuri, Sriram; Wang, Harris H.
Afiliação
  • Johns NI; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA.
  • Gomes ALC; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York, USA.
  • Yim SS; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA.
  • Yang A; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA.
  • Blazejewski T; School of Engineering and Applied Sciences, Columbia University, New York, New York, USA.
  • Smillie CS; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA.
  • Smith MB; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York, USA.
  • Alm EJ; Broad Institute, Cambridge, Massachusetts, USA.
  • Kosuri S; Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA.
  • Wang HH; Broad Institute, Cambridge, Massachusetts, USA.
Nat Methods ; 15(5): 323-329, 2018 05.
Article em En | MEDLINE | ID: mdl-30052624
Robust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions. We also observed substantial differences between species in terms of their capacity to utilize exogenous regulatory sequences. Finally, we demonstrate programmable species-selective gene expression that produces distinct and diverse output patterns in different microbes. Together, these findings provide a rich resource of characterized natural regulatory sequences and a framework that can be used to engineer synthetic gene circuits with unique and tunable cross-species functionality and properties, and also suggest the prospect of ultimately engineering complex behaviors at the community level.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Elementos Reguladores de Transcrição / Metagenômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Methods Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Elementos Reguladores de Transcrição / Metagenômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Methods Ano de publicação: 2018 Tipo de documento: Article