Your browser doesn't support javascript.
loading
Recent Developments in the Scope, Practicality, and Mechanistic Understanding of Enantioselective Hydroformylation.
Brezny, Anna C; Landis, Clark R.
Afiliação
  • Brezny AC; Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States.
  • Landis CR; Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States.
Acc Chem Res ; 51(9): 2344-2354, 2018 09 18.
Article em En | MEDLINE | ID: mdl-30118203
In the nearly 80 years since catalytic hydroformylation was first reported, hundreds of billions of pounds of aldehyde have been produced by this atom efficient one-carbon homologation of alkenes in the presence of H2 and CO. Despite the economy and demonstrated scalability of hydroformylation, the enantioselective process (asymmetric hydroformylation, AHF) currently does not contribute significantly to the production of chiral aldehydes and their derivatives. Current impediments to practical application of AHF include low diversity of chiral ligands that provide effective rates and selectivities, limited exploration of substrate scope, few demonstrations of efficient flow reactor processes, and incomplete mechanistic understanding of the factors that control reaction selectivity and rate. This Account summarizes developments in ligand design, substrate scope, reactor technology, and mechanistic understanding that advance AHF toward practical and atom-efficient production of chiral α-stereogenic aldehydes. Initial applications of AHF were limited to activated terminal alkenes such as styrene, but recent developments enable high selectivity for unactivated olefins and more complex substrates such as 1,1'- and 1,2-disubstituted alkenes. Expanded substrate scope primarily results from new chiral phosphine ligands, especially phospholanes and bisdiazaphospholanes (BDPs). These ligands are now more accessible due to improved synthesis and resolution procedures. One of the virtues of diazaphospholanes is the relative ease of derivatization, including attachment to heterogeneous supports. Hydroformylation involves toxic and flammable reactants, a serious concern in pharmaceutical production facilities. Flow reactors offer many process benefits for handling dangerous reagents and for systematically moving from research to production scales. New approaches to achieving good gas-liquid mixing in flow reactors have been demonstrated with BDP-derived catalyst systems and lend assurance that AHF can be practically implemented by the pharmaceutical and fine chemical industries. To date, progress in AHF has been empirically driven, because hydroformylation is a complex, multistep process for which the origins of chemo-, regio-, and enantioselectivity are difficult to elucidate. Mechanistic complexity arises from three concurrent catalytic cycles (linear and two diastereomeric branched paths), significant pooling of catalyst as off-cycle species, and multiple elementary steps that are kinetically competitive. Addressing such complexity requires new approaches to collecting kinetic and extra-kinetic information and analyzing these data. In this Account, we describe our group's progress toward understanding the complex kinetics and mechanism of AHF as catalyzed by rhodium bis(diazaphospholane) catalysts. Our strategy features both "outside-in" (i.e., monitoring catalytic rates and selectivities as a function of reactant concentration and temperature) and "inside-out" (i.e., building kinetic models based on the rates of component steps of the catalytic reaction) approaches. These studies include isotopic labeling, interception and characterization of catalytic intermediates using NMR techniques, multinuclear high-pressure NMR spectroscopy, and sophisticated kinetic modeling. Such broad-based approaches illuminate the kinetic and mechanistic origins of selectivity and activity of AHF and the elucidation of important principles that apply to all catalytic reactions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Acc Chem Res Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Acc Chem Res Ano de publicação: 2018 Tipo de documento: Article