Your browser doesn't support javascript.
loading
Microbial Production of Conjugated Linoleic Acid and Conjugated Linolenic Acid Relies on a Multienzymatic System.
Salsinha, Ana S; Pimentel, Lígia L; Fontes, Ana L; Gomes, Ana M; Rodríguez-Alcalá, Luis M.
Afiliação
  • Salsinha AS; Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
  • Pimentel LL; Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
  • Fontes AL; Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
  • Gomes AM; Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Aveiro, Portugal.
  • Rodríguez-Alcalá LM; Universidade Católica Portuguesa, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
Microbiol Mol Biol Rev ; 82(4)2018 12.
Article em En | MEDLINE | ID: mdl-30158254
Conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) have gained significant attention due to their anticarcinogenic and lipid/energy metabolism-modulatory effects. However, their concentration in foodstuffs is insufficient for any therapeutic application to be implemented. From a biotechnological standpoint, microbial production of these conjugated fatty acids (CFAs) has been explored as an alternative, and strains of the genera Propionibacterium, Lactobacillus, and Bifidobacterium have shown promising producing capacities. Current screening research works are generally based on direct analytical determination of production capacity (e.g., trial and error), representing an important bottleneck in these studies. This review aims to summarize the available information regarding identified genes and proteins involved in CLA/CLNA production by these groups of bacteria and, consequently, the possible enzymatic reactions behind such metabolic processes. Linoleate isomerase (LAI) was the first enzyme to be described to be involved in the microbiological transformation of linoleic acids (LAs) and linolenic acids (LNAs) into CFA isomers. Thus, the availability of lai gene sequences has allowed the development of genetic screening tools. Nevertheless, several studies have reported that LAIs have significant homology with myosin-cross-reactive antigen (MCRA) proteins, which are involved in the synthesis of hydroxy fatty acids, as shown by hydratase activity. Furthermore, it has been suggested that CLA and/or CLNA production results from a stress response performed by the activation of more than one gene in a multiple-step reaction. Studies on CFA biochemical pathways are essential to understand and characterize the metabolic mechanism behind this process, unraveling all the gene products that may be involved. As some of these bacteria have shown modulation of lipid metabolism in vivo, further research to be focused on this topic may help us to understand the role of the gut microbiota in human health.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Propionibacterium / Bifidobacterium / Ácidos Linolênicos / Ácidos Linoleicos Conjugados / Lactobacillus Limite: Animals / Humans Idioma: En Revista: Microbiol Mol Biol Rev Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Propionibacterium / Bifidobacterium / Ácidos Linolênicos / Ácidos Linoleicos Conjugados / Lactobacillus Limite: Animals / Humans Idioma: En Revista: Microbiol Mol Biol Rev Ano de publicação: 2018 Tipo de documento: Article