Your browser doesn't support javascript.
loading
Transcriptional profiling of embryos lacking the lipoprotein receptor SR-B1 reveals a regulatory circuit governing a neurodevelopmental or metabolic decision during neural tube closure.
Santander, Nicolás; Lizama, Carlos; Murgas, Leandro; Contreras, Sebastián; Martin, Alberto J M; Molina, Paz; Quiroz, Alonso; Rivera, Katherine; Salas-Pérez, Francisca; Godoy, Alejandro; Rigotti, Attilio; Busso, Dolores.
Afiliação
  • Santander N; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
  • Lizama C; Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
  • Murgas L; Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
  • Contreras S; Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
  • Martin AJM; Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
  • Molina P; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
  • Quiroz A; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
  • Rivera K; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
  • Salas-Pérez F; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
  • Godoy A; Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
  • Rigotti A; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
  • Busso D; Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
BMC Genomics ; 19(1): 731, 2018 Oct 05.
Article em En | MEDLINE | ID: mdl-30290792
BACKGROUND: The high-density lipoprotein receptor SR-B1 mediates cellular uptake of several lipid species, including cholesterol and vitamin E. During early mouse development, SR-B1 is located in the maternal-fetal interface, where it facilitates vitamin E transport towards the embryo. Consequently, mouse embryos lacking SR-B1 are vitamin E-deficient, and around half of them fail to close the neural tube and show cephalic neural tube defects (NTD). Here, we used transcriptomic profiling to identify the molecular determinants of this phenotypic difference between SR-B1 deficient embryos with normal morphology or with NTD. RESULTS: We used RNA-Seq to compare the transcriptomic profile of three groups of embryos retrieved from SR-B1 heterozygous intercrosses: wild-type E9.5 embryos (WT), embryos lacking SR-B1 that are morphologically normal, without NTD (KO-N) and SR-B1 deficient embryos with this defect (KO-NTD). We identified over 1000 differentially expressed genes: down-regulated genes in KO-NTD embryos were enriched for functions associated to neural development, while up-regulated genes in KO-NTD embryos were enriched for functions related to lipid metabolism. Feeding pregnant dams a vitamin E-enriched diet, which prevents NTD in SR-B1 KO embryos, resulted in mRNA levels for those differentially expressed genes that were more similar to KO-N than to KO-NTD embryos. We used gene regulatory network analysis to identify putative transcriptional regulators driving the different embryonic expression profiles, and identified a regulatory circuit controlled by the androgen receptor that may contribute to this dichotomous expression profile in SR-B1 embryos. Supporting this possibility, the expression level of the androgen receptor correlated strongly with the expression of several genes involved in neural development and lipid metabolism. CONCLUSIONS: Our analysis shows that normal and defective embryos lacking SR-B1 have divergent expression profiles, explained by a defined set of transcription factors that may explain their divergent phenotype. We propose that distinct expression profiles may be relevant during early development to support embryonic nutrition and neural tube closure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transcrição Gênica / Antígenos CD36 / Perfilação da Expressão Gênica / Redes Reguladoras de Genes / Tubo Neural / Técnicas de Inativação de Genes Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transcrição Gênica / Antígenos CD36 / Perfilação da Expressão Gênica / Redes Reguladoras de Genes / Tubo Neural / Técnicas de Inativação de Genes Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Ano de publicação: 2018 Tipo de documento: Article