Your browser doesn't support javascript.
loading
Automatic classification of grouper species by their sounds using deep neural networks.
Ibrahim, Ali K; Zhuang, Hanqi; Chérubin, Laurent M; Schärer-Umpierre, Michelle T; Erdol, Nurgun.
Afiliação
  • Ibrahim AK; Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA Aibrahim2014@fau.edu, zhuang@fau.edu.
  • Zhuang H; Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA Aibrahim2014@fau.edu, zhuang@fau.edu.
  • Chérubin LM; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US1 North, Fort Pierce, Florida 34946, USA lcherubin@fau.edu.
  • Schärer-Umpierre MT; HJR Reefscaping, P.O. Box 1442, Boquerón 00622, Puerto Rico michelle.scharer@upr.edu.
  • Erdol N; Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA erdol@fau.edu.
J Acoust Soc Am ; 144(3): EL196, 2018 09.
Article em En | MEDLINE | ID: mdl-30424627
In this paper, the effectiveness of deep learning for automatic classification of grouper species by their vocalizations has been investigated. In the proposed approach, wavelet denoising is used to reduce ambient ocean noise, and a deep neural network is then used to classify sounds generated by different species of groupers. Experimental results for four species of groupers show that the proposed approach achieves a classification accuracy of around 90% or above in all of the tested cases, a result that is significantly better than the one obtained by a previously reported method for automatic classification of grouper calls.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Som / Vocalização Animal / Redes Neurais de Computação / Aprendizado Profundo Limite: Animals Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Som / Vocalização Animal / Redes Neurais de Computação / Aprendizado Profundo Limite: Animals Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2018 Tipo de documento: Article