Your browser doesn't support javascript.
loading
Characterisation of the NRF2 transcriptional network and its response to chemical insult in primary human hepatocytes: implications for prediction of drug-induced liver injury.
Copple, Ian M; den Hollander, Wouter; Callegaro, Giulia; Mutter, Fiona E; Maggs, James L; Schofield, Amy L; Rainbow, Lucille; Fang, Yongxiang; Sutherland, Jeffrey J; Ellis, Ewa C; Ingelman-Sundberg, Magnus; Fenwick, Stephen W; Goldring, Christopher E; van de Water, Bob; Stevens, James L; Park, B Kevin.
Afiliação
  • Copple IM; MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK. ian.copple@liverpool.ac.uk.
  • den Hollander W; Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, 171-77, Stockholm, Sweden. ian.copple@liverpool.ac.uk.
  • Callegaro G; Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands.
  • Mutter FE; Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands.
  • Maggs JL; MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
  • Schofield AL; MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
  • Rainbow L; MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
  • Fang Y; Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
  • Sutherland JJ; Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
  • Ellis EC; Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
  • Ingelman-Sundberg M; Liver Cell Lab, Unit for Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, 141-86, Stockholm, Sweden.
  • Fenwick SW; Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, 171-77, Stockholm, Sweden.
  • Goldring CE; Department of Hepatobiliary Surgery, Aintree University Hospital NHS Foundation Trust, Liverpool, L9 7AL, UK.
  • van de Water B; MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.
  • Stevens JL; Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, The Netherlands.
  • Park BK; Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
Arch Toxicol ; 93(2): 385-399, 2019 02.
Article em En | MEDLINE | ID: mdl-30426165
ABSTRACT
The transcription factor NRF2, governed by its repressor KEAP1, protects cells against oxidative stress. There is interest in modelling the NRF2 response to improve the prediction of clinical toxicities such as drug-induced liver injury (DILI). However, very little is known about the makeup of the NRF2 transcriptional network and its response to chemical perturbation in primary human hepatocytes (PHH), which are often used as a translational model for investigating DILI. Here, microarray analysis identified 108 transcripts (including several putative novel NRF2-regulated genes) that were both downregulated by siRNA targeting NRF2 and upregulated by siRNA targeting KEAP1 in PHH. Applying weighted gene co-expression network analysis (WGCNA) to transcriptomic data from the Open TG-GATES toxicogenomics repository (representing PHH exposed to 158 compounds) revealed four co-expressed gene sets or 'modules' enriched for these and other NRF2-associated genes. By classifying the 158 TG-GATES compounds based on published evidence, and employing the four modules as network perturbation metrics, we found that the activation of NRF2 is a very good indicator of the intrinsic biochemical reactivity of a compound (i.e. its propensity to cause direct chemical stress), with relatively high sensitivity, specificity, accuracy and positive/negative predictive values. We also found that NRF2 activation has lower sensitivity for the prediction of clinical DILI risk, although relatively high specificity and positive predictive values indicate that false positive detection rates are likely to be low in this setting. Underpinned by our comprehensive analysis, activation of the NRF2 network is one of several mechanism-based components that can be incorporated into holistic systems toxicology models to improve mechanistic understanding and preclinical prediction of DILI in man.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hepatócitos / Fator 2 Relacionado a NF-E2 / Redes Reguladoras de Genes / Doença Hepática Induzida por Substâncias e Drogas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Arch Toxicol Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hepatócitos / Fator 2 Relacionado a NF-E2 / Redes Reguladoras de Genes / Doença Hepática Induzida por Substâncias e Drogas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Arch Toxicol Ano de publicação: 2019 Tipo de documento: Article