Your browser doesn't support javascript.
loading
Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits.
Xu, Shuwa; Xiao, Qi; Cosmanescu, Filip; Sergeeva, Alina P; Yoo, Juyoun; Lin, Ying; Katsamba, Phinikoula S; Ahlsen, Goran; Kaufman, Jonathan; Linaval, Nikhil T; Lee, Pei-Tseng; Bellen, Hugo J; Shapiro, Lawrence; Honig, Barry; Tan, Liming; Zipursky, S Lawrence.
Afiliação
  • Xu S; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Xiao Q; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Cosmanescu F; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Sergeeva AP; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
  • Yoo J; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Lin Y; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Katsamba PS; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
  • Ahlsen G; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
  • Kaufman J; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Linaval NT; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Lee PT; Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
  • Bellen HJ; Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
  • Shapiro L; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
  • Honig B; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Colu
  • Tan L; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address: tanlimingleo@gmail.com.
  • Zipursky SL; Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address: lzipursky@mednet.ucla.edu.
Neuron ; 100(6): 1369-1384.e6, 2018 12 19.
Article em En | MEDLINE | ID: mdl-30467079
Drosophila Dpr (21 paralogs) and DIP proteins (11 paralogs) are cell recognition molecules of the immunoglobulin superfamily (IgSF) that form a complex protein interaction network. DIP and Dpr proteins are expressed in a synaptic layer-specific fashion in the visual system. How interactions between these proteins regulate layer-specific synaptic circuitry is not known. Here we establish that DIP-α and its interacting partners Dpr6 and Dpr10 regulate multiple processes, including arborization within layers, synapse number, layer specificity, and cell survival. We demonstrate that heterophilic binding between Dpr6/10 and DIP-α and homophilic binding between DIP-α proteins promote interactions between processes in vivo. Knockin mutants disrupting the DIP/Dpr binding interface reveal a role for these proteins during normal development, while ectopic expression studies support an instructive role for interactions between DIPs and Dprs in circuit development. These studies support an important role for the DIP/Dpr protein interaction network in regulating cell-type-specific connectivity patterns.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Regulação da Expressão Gênica no Desenvolvimento / Neurópilo / Proteínas de Drosophila Limite: Animals / Humans Idioma: En Revista: Neuron Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Regulação da Expressão Gênica no Desenvolvimento / Neurópilo / Proteínas de Drosophila Limite: Animals / Humans Idioma: En Revista: Neuron Ano de publicação: 2018 Tipo de documento: Article