Your browser doesn't support javascript.
loading
Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways.
Podrini, Christine; Rowe, Isaline; Pagliarini, Roberto; Costa, Ana S H; Chiaravalli, Marco; Di Meo, Ivano; Kim, Hyunho; Distefano, Gianfranco; Tiranti, Valeria; Qian, Feng; di Bernardo, Diego; Frezza, Christian; Boletta, Alessandra.
Afiliação
  • Podrini C; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
  • Rowe I; INVEST- Marie Curie Postdoctoral Program, Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy.
  • Pagliarini R; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
  • Costa ASH; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
  • Chiaravalli M; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, 80078, Italy.
  • Di Meo I; MRC, Cancer Unit Cambridge, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
  • Kim H; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
  • Distefano G; Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via L. Temolo 4, 20126, Milan, Italy.
  • Tiranti V; Division of Nephrology, Department of Medicine, University of Maryl and School of Medicine, Baltimore, MD, 21201, USA.
  • Qian F; Center for Medical Innovation, Seoul National University Hospital, Seoul, 03080, Korea.
  • di Bernardo D; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy.
  • Frezza C; Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Via L. Temolo 4, 20126, Milan, Italy.
  • Boletta A; Division of Nephrology, Department of Medicine, University of Maryl and School of Medicine, Baltimore, MD, 21201, USA.
Commun Biol ; 1: 194, 2018.
Article em En | MEDLINE | ID: mdl-30480096
ABSTRACT
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder caused by loss-of-function mutations in PKD1 or PKD2. Increased glycolysis is a prominent feature of the disease, but how it impacts on other metabolic pathways is unknown. Here, we present an analysis of mouse Pkd1 mutant cells and kidneys to investigate the metabolic reprogramming of this pathology. We show that loss of Pkd1 leads to profound metabolic changes that affect glycolysis, mitochondrial metabolism, and fatty acid synthesis (FAS). We find that Pkd1-mutant cells preferentially use glutamine to fuel the TCA cycle and to sustain FAS. Interfering with either glutamine uptake or FAS retards cell growth and survival. We also find that glutamine is diverted to asparagine via asparagine synthetase (ASNS). Transcriptional profiling of PKD1-mutant human kidneys confirmed these alterations. We find that silencing of Asns is lethal in Pkd1-mutant cells when combined with glucose deprivation, suggesting therapeutic approaches for ADPKD.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Commun Biol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Commun Biol Ano de publicação: 2018 Tipo de documento: Article