Your browser doesn't support javascript.
loading
Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas.
Rogers, A Deanne; Warner, Nicholas H; Golombek, Matthew P; Head, James W; Cowart, Justin C.
Afiliação
  • Rogers AD; Department of Geosciences, Stony Brook University, Stony Brook, NY, USA.
  • Warner NH; Department of Geological Sciences, State University of New York at Geneseo, Geneseo, NY, USA.
  • Golombek MP; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Head JW; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA.
  • Cowart JC; Department of Geosciences, Stony Brook University, Stony Brook, NY, USA.
Geophys Res Lett ; 45(4): 1767-1777, 2018 Feb 28.
Article em En | MEDLINE | ID: mdl-30598561
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Geophys Res Lett Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Geophys Res Lett Ano de publicação: 2018 Tipo de documento: Article