Your browser doesn't support javascript.
loading
Focused Ultrasound Hyperthermia for Targeted Drug Release from Thermosensitive Liposomes: Results from a Phase I Trial.
Gray, Michael D; Lyon, Paul C; Mannaris, Christophoros; Folkes, Lisa K; Stratford, Michael; Campo, Leticia; Chung, Daniel Y F; Scott, Shaun; Anderson, Mark; Goldin, Robert; Carlisle, Robert; Wu, Feng; Middleton, Mark R; Gleeson, Fergus V; Coussios, Constantin C.
Afiliação
  • Gray MD; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Lyon PC; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Mannaris C; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Folkes LK; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Stratford M; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Campo L; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Chung DYF; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Scott S; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Anderson M; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Goldin R; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Carlisle R; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Wu F; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Middleton MR; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Gleeson FV; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
  • Coussios CC; From the Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, England (M.D.G., P.C.L., C.M., R.C., C.C.C.); Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England (P
Radiology ; 291(1): 232-238, 2019 04.
Article em En | MEDLINE | ID: mdl-30644817
Purpose To demonstrate the feasibility and safety of using focused ultrasound planning models to determine the treatment parameters needed to deliver volumetric mild hyperthermia for targeted drug delivery without real-time thermometry. Materials and Methods This study was part of the Targeted Doxorubicin, or TARDOX, phase I prospective trial of focused ultrasound-mediated, hyperthermia-triggered drug delivery to solid liver tumors ( ClinicalTrials.gov identifier NCT02181075). Ten participants (age range, 49-68 years; average age, 60 years; four women) were treated from March 2015 to March 2017 by using a clinically approved focused ultrasound system to release doxorubicin from lyso-thermosensitive liposomes. Ultrasonic heating of target tumors (treated volume: 11-73 cm3 [mean ± standard deviation, 50 cm3 ± 26]) was monitored in six participants by using a minimally invasive temperature sensor; four participants were treated without real-time thermometry. For all participants, CT images were used with a patient-specific hyperthermia model to define focused ultrasound treatment plans. Feasibility was assessed by comparing model-prescribed focused ultrasound powers to those implemented for treatment. Safety was assessed by evaluating MR images and biopsy specimens for evidence of thermal ablation and monitoring adverse events. Results The mean difference between predicted and implemented treatment powers was -0.1 W ± 17.7 (n = 10). No evidence of focused ultrasound-related adverse effects, including thermal ablation, was found. Conclusion In this 10-participant study, the authors confirmed the feasibility of using focused ultrasound-mediated hyperthermia planning models to define treatment parameters that safely enabled targeted, noninvasive drug delivery to liver tumors while monitored with B-mode guidance and without real-time thermometry. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Dickey and Levi-Polyachenko in this issue.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Terapia por Ultrassom / Doxorrubicina / Hipertermia Induzida / Neoplasias Hepáticas / Antibióticos Antineoplásicos Tipo de estudo: Guideline / Observational_studies / Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Radiology Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Terapia por Ultrassom / Doxorrubicina / Hipertermia Induzida / Neoplasias Hepáticas / Antibióticos Antineoplásicos Tipo de estudo: Guideline / Observational_studies / Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Radiology Ano de publicação: 2019 Tipo de documento: Article