Your browser doesn't support javascript.
loading
Electrochemical Reflective Absorption Microscopy for Probing the Local Diffusion Behavior in the Electrochemical Interface.
Pan, Yu-Yi; Zong, Cheng; Huang, Ya-Jun; Lyu, Rui-Qi; Dai, Yin-Zhen; Wang, Lei; Ren, Bin.
Afiliação
  • Pan YY; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiam
  • Zong C; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiam
  • Huang YJ; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiam
  • Lyu RQ; Department of Mechanical and Electrical Engineering, School of Aerospace Engineering , Xiamen University , Xiamen 361005 , People's Republic of China.
  • Dai YZ; Department of Mechanical and Electrical Engineering, School of Aerospace Engineering , Xiamen University , Xiamen 361005 , People's Republic of China.
  • Wang L; Department of Mechanical and Electrical Engineering, School of Aerospace Engineering , Xiamen University , Xiamen 361005 , People's Republic of China.
  • Ren B; State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiam
Anal Chem ; 91(4): 2831-2837, 2019 02 19.
Article em En | MEDLINE | ID: mdl-30663310
Electrochemical interfaces determine the performance of electrochemical devices, including energy-related systems. An in-depth understanding of the heterogeneous interfaces requires in situ techniques with high sensitivity and high temporal and spatial resolution. We develop here an electrochemical reflective absorption microscope (EC-RAM) by using the absorption signals of reacting species with a reasonably good spatial resolution and high sensitivity. We systematically study the response of absorbance ( A) and its derivative, i.e. d A/d t, at different positions of the electrode surface and at electrodes with different sizes (50 µm, 500 µm, and 2 mm) both experimentally and theoretically. We find that the derivative cyclic voltabsorptometry (DCVA) frequently used to obtain the local current response in conventional electrochemical optical microscopy techniques is only applicable to reactions of surface species or solution species under linear diffusion control. For processes when the radial diffusion cannot be ignored, as in the case of a microelectrode or the edge of a large electrode, the DCVA curves show distinct diffusion behaviors for the electroactive species in different regions of the electrode, which cannot be directly related to the CV curves. When the radial diffusion dominates the reaction, CVA curves follow the same shape as the CV curves. The developed EC-RAM technique can be applied to extract in situ the local response of an electrochemical system during the dynamic reaction processes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Anal Chem Ano de publicação: 2019 Tipo de documento: Article