Your browser doesn't support javascript.
loading
ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation.
Sharma, Nikhil; Pollina, Elizabeth A; Nagy, M Aurel; Yap, Ee-Lynn; DiBiase, Florence A; Hrvatin, Sinisa; Hu, Linda; Lin, Cindy; Greenberg, Michael E.
Afiliação
  • Sharma N; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Pollina EA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Nagy MA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Yap EL; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • DiBiase FA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Hrvatin S; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Hu L; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Lin C; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
  • Greenberg ME; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: michael_greenberg@hms.harvard.edu.
Neuron ; 102(2): 390-406.e9, 2019 04 17.
Article em En | MEDLINE | ID: mdl-30846309
ABSTRACT
Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Translocador Nuclear Receptor Aril Hidrocarboneto / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Correpressor 2 de Receptor Nuclear / Neurônios Limite: Animals Idioma: En Revista: Neuron Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regulação da Expressão Gênica / Translocador Nuclear Receptor Aril Hidrocarboneto / Fatores de Transcrição Hélice-Alça-Hélice Básicos / Correpressor 2 de Receptor Nuclear / Neurônios Limite: Animals Idioma: En Revista: Neuron Ano de publicação: 2019 Tipo de documento: Article