Your browser doesn't support javascript.
loading
Thermally Activated Delayed Fluorescence Carbonyl Derivatives for Organic Light-Emitting Diodes with Extremely Narrow Full Width at Half-Maximum.
Li, Xing; Shi, Yi-Zhong; Wang, Kai; Zhang, Ming; Zheng, Cai-Jun; Sun, Dian-Ming; Dai, Gao-Le; Fan, Xiao-Chun; Wang, De-Qi; Liu, Wei; Li, Yan-Qing; Yu, Jia; Ou, Xue-Mei; Adachi, Chihaya; Zhang, Xiao-Hong.
Afiliação
  • Li X; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Shi YZ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Wang K; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Zhang M; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Zheng CJ; School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China.
  • Sun DM; School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China.
  • Dai GL; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Fan XC; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Wang DQ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Liu W; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Li YQ; School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China.
  • Yu J; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Ou XM; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Adachi C; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
  • Zhang XH; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China.
ACS Appl Mater Interfaces ; 11(14): 13472-13480, 2019 Apr 10.
Article em En | MEDLINE | ID: mdl-30892014
ABSTRACT
Two novel thermally activated delayed fluorescence (TADF) emitters, 3-phenylquinolino[3,2,1- de]acridine-5,9-dione (3-PhQAD) and 7-phenylquinolino[3,2,1- de]acridine-5,9-dione (7-PhQAD), were designed and synthesized based on a rigid quinolino[3,2,1- de]acridine-5,9-dione (QAD) framework. With the effective superimposed resonance effect from electron-deficient carbonyls and electron-rich nitrogen atom, both emitters realize significant TADF characteristics with small Δ ESTs of 0.18 and 0.19 eV, respectively. And, molecular relaxations were dramatically suppressed for both emitters because of their conjugated structure. In the devices, 3-PhQAD realizes superior performance with a maximum external quantum efficiency (EQE) of 19.1% and a narrow full width at half-maximum (FWHM) of 44 nm, whereas a maximum EQE of 18.7% and an extremely narrow FWHM of 34 nm are realized for 7-PhQAD. These superior results reveal that apart from nitrogen and boron-aromatic systems, QAD framework can also act as a TADF matrix with effective resonance effect, and QAD derivatives are ideal candidates to develop TADF emitters with narrow FWHMs for practical applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2019 Tipo de documento: Article