Your browser doesn't support javascript.
loading
Graphene-Encapsulated Co9 S8 Nanoparticles on N,S-Codoped Carbon Nanotubes: An Efficient Bifunctional Oxygen Electrocatalyst.
Jia, Nan; Liu, Jing; Gao, Yunshan; Chen, Pei; Chen, Xinbing; An, Zhongwei; Li, Xifei; Chen, Yu.
Afiliação
  • Jia N; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Liu J; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Gao Y; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Chen P; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Chen X; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • An Z; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
  • Li X; Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, P. R. China.
  • Chen Y; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
ChemSusChem ; 12(14): 3390-3400, 2019 Jul 19.
Article em En | MEDLINE | ID: mdl-30895738
ABSTRACT
An inexpensive and efficient bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is central to the rechargeable zinc-air battery. Herein, a nanohybrid, in which N,S-codoped carbon nanotubes were decorated with Co9 S8 nanoparticles encapsulated in porous graphene layers, was fabricated by a one-step heat-treatment process. The N,S dopant species were the major active sites for the ORR, and Co9 S8 nanoparticles were mainly responsible for the OER. Compared with commercial 20 wt % Pt/C and Ir/C electrocatalysts, this nanohybrid exhibited a comparable ORR half-wave potential (0.831 V vs. reversible hydrogen electrode) and OER potential (1.591 V at 10 mA cm-2 ), better long-term stability in an alkaline medium, and a narrower potential gap (0.76 V) between ORR and OER. Furthermore, as air electrode of the rechargeable zinc-air battery, it delivered a low charge-discharge voltage gap (0.65 V at 5 mA cm-2 ), high open-circuit potential (1.539 V), good specific capacity (805 mA h g - 1 Zn at 5 mA cm-2 ), and excellent cycling stability (48 h), superior to those of commercial Pt/C and Ir/C catalysts, and thus showed promise for applications in renewable energy conversion devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Ano de publicação: 2019 Tipo de documento: Article