Your browser doesn't support javascript.
loading
Interaction of antioxidant gene variants and susceptibility to type 2 diabetes mellitus.
Banerjee, M; Vats, P; Kushwah, A S; Srivastava, N.
Afiliação
  • Banerjee M; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Vats P; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Kushwah AS; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.
  • Srivastava N; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Br J Biomed Sci ; 76(4): 166-171, 2019 Oct.
Article em En | MEDLINE | ID: mdl-30900957
ABSTRACT

Background:

Diabetes is the seventh most common disease leading to death with a global estimate of 425 million diabetics, expected to be 629 million in 2045. The role of reactive metabolites and antioxidants, such as glutathione, glutathione peroxidase, superoxide dismutase and catalase in type 2 diabetes mellitus (T2DM) provides an opportunity for identifying gene variants and risk genotypes. We hypothesised that certain antioxidant gene-gene interactions are linked with T2DM and can model disease risk prediction.Materials and

methods:

Genotyping of single nucleotide polymorphisms (SNPs) in antioxidant genes for glutathione (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) was performed in 558 T2DMs and 410 age and sex matched healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), routine lab indices by standard techniques.

Results:

The null/null allele combination of GSTM1del and GSTT1del increased disease risk up to 1.7-fold. The combination of SNPs in GSTM1del, GSTT1del, GSTP1 + 313A/G and in CAT-21A/T, SOD2 + 47C/T, GPx1 + 599C/T increased the risk of diabetes 13.5 and 2.1-fold, respectively. Interaction of SNPs GSTM1del, GSTT1del, GSTP1 + 313A/G (105Ile/Val), CAT-21A/T, SOD2 + 47C/T, GPx1 + 599C/T were significantly linked with disease risk >5 × 103 fold.

Conclusion:

As the number of gene combinations increase, there is a rise in the odds ratio of disease risk, suggesting that gene-gene interaction plays an important role in T2DM susceptibility. Individuals who possess the GSTM1del, GSTT1del, GSTP1 105I/V(+313A/G), CAT-21A/T, SOD2 + 47C/T and GPx1 + 599C/T are at very high risk of developing T2DM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Catalase / Diabetes Mellitus Tipo 2 / Epistasia Genética / Glutationa Peroxidase / Glutationa Transferase Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Br J Biomed Sci Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Superóxido Dismutase / Catalase / Diabetes Mellitus Tipo 2 / Epistasia Genética / Glutationa Peroxidase / Glutationa Transferase Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Br J Biomed Sci Ano de publicação: 2019 Tipo de documento: Article