Your browser doesn't support javascript.
loading
Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species.
Zhang, Di; Yang, Jing-Fang; Gao, Bei; Liu, Tie-Yuan; Hao, Ge-Fei; Yang, Guang-Fu; Fu, Li-Jun; Chen, Mo-Xian; Zhang, Jianhua.
Afiliação
  • Zhang D; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
  • Yang JF; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
  • Gao B; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Liu TY; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
  • Hao GF; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
  • Yang GF; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Fu LJ; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
  • Chen MX; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, Fujian, People's Republic of China.
  • Zhang J; School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong. mchen@cuhkri.org.cn.
Planta ; 249(6): 1997-2014, 2019 Jun.
Article em En | MEDLINE | ID: mdl-30904945
ABSTRACT
MAIN

CONCLUSION:

The work offers a comprehensive evaluation on the phylogenetics and conservation of splicing patterns of the plant SPF30 splicing factor gene family. In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genome-wide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Precursores de RNA / Processamento Alternativo / Fatores de Processamento de RNA Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Planta Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Precursores de RNA / Processamento Alternativo / Fatores de Processamento de RNA Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Planta Ano de publicação: 2019 Tipo de documento: Article