Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?
Angew Chem Int Ed Engl
; 58(24): 8024-8028, 2019 Jun 11.
Article
em En
| MEDLINE
| ID: mdl-30951223
Alkaline metals are an ideal negative electrode for rechargeable batteries. Forming a fluorine-rich interphase by a fluorinated electrolyte is recognized as key to utilizing lithium metal electrodes, and the same strategy is being applied to sodium metal electrodes. However, their reversible plating/stripping reactions have yet to be achieved. Herein, we report a contrary concept of fluorine-free electrolytes for sodium metal batteries. A sodium tetraphenylborate/monoglyme electrolyte enables reversible sodium plating/stripping at an average Coulombic efficiency of 99.85 % over 300 cycles. Importantly, the interphase is composed mainly of carbon, oxygen, and sodium elements with a negligible presence of fluorine, but it has both high stability and extremely low resistance. This work suggests a new direction for stabilizing sodium metal electrodes via fluorine-free interphases.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2019
Tipo de documento:
Article