Your browser doesn't support javascript.
loading
Use of online tools for antimicrobial resistance prediction by whole-genome sequencing in methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE).
Babiker, Ahmed; Mustapha, Mustapha M; Pacey, Marissa P; Shutt, Kathleen A; Ezeonwuka, Chinelo D; Ohm, Sara L; Cooper, Vaughn S; Marsh, Jane W; Doi, Yohei; Harrison, Lee H.
Afiliação
  • Babiker A; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: ahmed.babiker@emory.edu.
  • Mustapha MM; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Pacey MP; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Shutt KA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ezeonwuka CD; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ohm SL; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Cooper VS; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
  • Marsh JW; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
  • Doi Y; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
  • Harrison LH; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Microbial Genomic Epidemiology Laboratory, Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA, USA.
J Glob Antimicrob Resist ; 19: 136-143, 2019 12.
Article em En | MEDLINE | ID: mdl-31005733
ABSTRACT

OBJECTIVES:

The antimicrobial resistance (AMR) crisis represents a serious threat to public health and has resulted in concentrated efforts to accelerate development of rapid molecular diagnostics for AMR. In combination with publicly available web-based AMR databases, whole-genome sequencing (WGS) offers the capacity for rapid detection of AMR genes. Here we studied the concordance between WGS-based resistance prediction and phenotypic susceptibility test results for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) clinical isolates using publicly available tools and databases.

METHODS:

Clinical isolates prospectively collected at the University of Pittsburgh Medical Center between December 2016 and December 2017 underwent WGS. The AMR gene content was assessed from assembled genomes by BLASTn search of online databases. Concordance between the WGS-predicted resistance profile and phenotypic susceptibility as well as the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each antibiotic/organism combination, using the phenotypic results as gold standard.

RESULTS:

Phenotypic susceptibility testing and WGS results were available for 1242 isolate/antibiotic combinations. Overall concordance was 99.3%, with a sensitivity, specificity, PPV and NPV of 98.7% (95% CI 97.2-99.5%), 99.6% (95% CI 98.8-99.9%), 99.3% (95% CI 98.0-99.8%) and 99.2% (95% CI 98.3-99.7%), respectively. Additional identification of point mutations in housekeeping genes increased the concordance to 99.4%, sensitivity to 99.3% (95% CI 98.2-99.8%) and NPV to 99.4% (95% CI 98.4-99.8%).

CONCLUSION:

WGS can be used as a reliable predicator of phenotypic resistance both for MRSA and VRE using readily available online tools.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Farmacorresistência Bacteriana / Staphylococcus aureus Resistente à Meticilina / Enterococos Resistentes à Vancomicina / Sequenciamento Completo do Genoma Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Glob Antimicrob Resist Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Farmacorresistência Bacteriana / Staphylococcus aureus Resistente à Meticilina / Enterococos Resistentes à Vancomicina / Sequenciamento Completo do Genoma Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Glob Antimicrob Resist Ano de publicação: 2019 Tipo de documento: Article