Your browser doesn't support javascript.
loading
Transcriptome and excretory-secretory proteome of infective-stage larvae of the nematode Gnathostoma spinigerum reveal potential immunodiagnostic targets for development.
Nuamtanong, Supaporn; Reamtong, Onrapak; Phuphisut, Orawan; Chotsiri, Palang; Malaithong, Preeyarat; Dekumyoy, Paron; Adisakwattana, Poom.
Afiliação
  • Nuamtanong S; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
  • Reamtong O; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
  • Phuphisut O; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
  • Chotsiri P; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand.
  • Malaithong P; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
  • Dekumyoy P; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
  • Adisakwattana P; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
Parasite ; 26: 34, 2019.
Article em En | MEDLINE | ID: mdl-31166909
ABSTRACT

BACKGROUND:

Gnathostoma spinigerum is a harmful parasitic nematode that causes severe morbidity and mortality in humans and animals. Effective drugs and vaccines and reliable diagnostic methods are needed to prevent and control the associated diseases; however, the lack of genome, transcriptome, and proteome databases remains a major limitation. In this study, transcriptomic and secretomic analyses of advanced third-stage larvae of G. spinigerum (aL3Gs) were performed using next-generation sequencing, bioinformatics, and proteomics.

RESULTS:

An analysis that incorporated transcriptome and bioinformatics data to predict excretory-secretory proteins (ESPs) classified 171 and 292 proteins into classical and non-classical secretory groups, respectively. Proteins with proteolytic (metalloprotease), cell signaling regulatory (i.e., kinases and phosphatase), and metabolic regulatory function (i.e., glucose and lipid metabolism) were significantly upregulated in the transcriptome and secretome. A two-dimensional (2D) immunomic analysis of aL3Gs-ESPs with G. spinigerum-infected human sera and related helminthiases suggested that the serine protease inhibitor (serpin) was a promising antigenic target for the further development of gnathostomiasis immunodiagnostic methods.

CONCLUSIONS:

The transcriptome and excretory-secretory proteome of aL3Gs can facilitate an understanding of the basic molecular biology of the parasite and identifying multiple associated factors, possibly promoting the discovery of novel drugs and vaccines. The 2D-immunomic analysis identified serpin, a protein secreted from aL3Gs, as an interesting candidate for immunodiagnosis that warrants immediate evaluation and validation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND / 4_TD Base de dados: MEDLINE Assunto principal: Testes Imunológicos / Proteínas de Helminto / Proteoma / Transcriptoma / Gnathostoma / Larva Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Parasite Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND / 4_TD Base de dados: MEDLINE Assunto principal: Testes Imunológicos / Proteínas de Helminto / Proteoma / Transcriptoma / Gnathostoma / Larva Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Parasite Ano de publicação: 2019 Tipo de documento: Article