Your browser doesn't support javascript.
loading
From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal.
Rolph, Catherine A; Villa, Raffaella; Jefferson, Bruce; Brookes, Adam; Choya, Andoni; Iceton, Gregg; Hassard, Francis.
Afiliação
  • Rolph CA; Cranfield University, Bedfordshire MK43 0AL, UK.
  • Villa R; Cranfield University, Bedfordshire MK43 0AL, UK; De Montfort University, Leicester, LE1 9BH, UK. Electronic address: raffaella.villa@dmu.ac.uk.
  • Jefferson B; Cranfield University, Bedfordshire MK43 0AL, UK.
  • Brookes A; Anglian Water, Thorpewood House, Peterborough PE3 6WT, UK.
  • Choya A; Cranfield University, Bedfordshire MK43 0AL, UK; Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain.
  • Iceton G; Newcastle University, Newcastle upon Tyne NE17RU, UK.
  • Hassard F; Cranfield University, Bedfordshire MK43 0AL, UK.
Sci Total Environ ; 685: 410-418, 2019 Oct 01.
Article em En | MEDLINE | ID: mdl-31176226
ABSTRACT
Polar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operational biofilters have shown the ability to remove metaldehyde. As sorption plays a minor role for such polar organic micropollutants, biodegradation is therefore likely to be the main removal pathway. In this work, the biodegradation of metaldehyde was monitored, and assessed, in an operational slow sand filter. Long-term data showed that metaldehyde degradation improved when inlet concentrations increased. A comparison of inactive and active sand batch reactors showed that metaldehyde removal happened mainly through biodegradation and that the removal rates were greater after the biofilm was acclimated through exposure to high metaldehyde concentrations. This suggested that metaldehyde removal was reliant on enrichment and that the process could be engineered to decrease treatment times (from days to hours). Through-flow experiments using fluidised bed reactors, showed the same behaviour following metaldehyde acclimation. A 40% increase in metaldehyde removal was observed in acclimated compared with non-acclimated columns. This increase was sustained for >40 days, achieving an average of 80% removal and compliance (<0.1 µâ€¯L-1) for >20 days. An initial microbial analysis of the acclimated and non-acclimated biofilm from the same filter materials, showed that the microbial community in acclimated sand was significantly different. This work presents a novel conceptual template for a faster, chemical free, low cost, biological treatment of metaldehyde and other polar pollutants in drinking water. In addition, this is the first study to report kinetics of metaldehyde degradation in an active microbial biofilm at a WTW.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Purificação da Água / Reatores Biológicos / Acetaldeído Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Purificação da Água / Reatores Biológicos / Acetaldeído Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article