Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons.
Sci Rep
; 9(1): 9615, 2019 07 03.
Article
em En
| MEDLINE
| ID: mdl-31270336
Axonal degeneration is a key pathology of neurodegenerative diseases, including hereditary spastic paraplegia (HSP), a disorder characterized by spasticity in the lower limbs. Treatments for HSP and other neurodegenerative diseases are mainly symptomatic. While iPSC-derived neurons are valuable for drug discovery and target identification, these applications require robust differentiation paradigms and rapid phenotypic read-outs ranging between hours and a few days. Using spastic paraplegia type 4 (SPG4, the most frequent HSP subtype) as an exemplar, we here present three rapid phenotypic assays for uncovering neuronal process pathologies in iPSC-derived glutamatergic cortical neurons. Specifically, these assays detected a 51% reduction in neurite outgrowth and a 60% increase in growth cone area already 24 hours after plating; axonal swellings, a hallmark of HSP pathology, was discernible after only 5 days. Remarkably, the identified phenotypes were neuron subtype-specific and not detectable in SPG4-derived GABAergic forebrain neurons. We transferred all three phenotypic assays to a 96-well setup, applied small molecules and found that a liver X receptor (LXR) agonist rescued all three phenotypes in HSP neurons, providing a potential drug target for HSP treatment. We expect this multiparametric and rapid phenotyping approach to accelerate development of therapeutic compounds for HSP and other neurodegenerative diseases.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Biomarcadores
/
Avaliação Pré-Clínica de Medicamentos
/
Descoberta de Drogas
/
Neurônios
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Screening_studies
Limite:
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2019
Tipo de documento:
Article