Your browser doesn't support javascript.
loading
Trigonal to Pentagonal Bipyramidal Coordination Switching in a Co(II) Single-Ion Magnet.
Hay, Moya A; McMonagle, Charles J; Wilson, Claire; Probert, Michael R; Murrie, Mark.
Afiliação
  • Hay MA; WestCHEM, School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , United Kingdom.
  • McMonagle CJ; Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , United Kingdom.
  • Wilson C; WestCHEM, School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , United Kingdom.
  • Probert MR; Chemistry, School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , United Kingdom.
  • Murrie M; WestCHEM, School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , United Kingdom.
Inorg Chem ; 58(15): 9691-9697, 2019 Aug 05.
Article em En | MEDLINE | ID: mdl-31328921
ABSTRACT
In molecular magnetism and single-ion magnets in particular, the observation of slow relaxation of the magnetization is intimately linked to the coordination environment of the metal center. Such systems typically have blocking temperatures well below that of liquid nitrogen, and therefore detailed magnetic characterization is usually carried out at very low temperatures. Despite this, there has been little advantage taken of ultralow temperature single-crystal X-ray diffraction techniques that could provide a full understanding of the crystal structure in the same temperature regime where slow magnetic relaxation occurs. Here, we present a systematic variable temperature single crystal X-ray diffraction study of [CoII(NO3)3(H2O)(HDABCO)] (1) {DABCO = 1,4-diazabicyclo[2.2.2]octane} conducted between 295 to 4 K. A reversible and robust disorder-to-order, single-crystal to single-crystal phase transition was identified, which accompanied a switching of the coordination geometry around the central Co(II) from 5- to 7-coordinate below 140 K. The magnetic properties were investigated, revealing slow relaxation of the magnetization arising from a large easy-plane magnetic anisotropy (+D) in the Co(II) pentagonal bipyramidal environment observed at low temperatures. This study highlights the importance of conducting thorough low temperature crystallographic studies, particularly where magnetic characterization is carried out at such low temperatures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Inorg Chem Ano de publicação: 2019 Tipo de documento: Article