Theoretical insights into the hydrogen bonding interaction in the complexation of epinephrine with uracil.
J Mol Model
; 25(8): 252, 2019 Jul 29.
Article
em En
| MEDLINE
| ID: mdl-31353431
The present study is aimed at probing the hydrogen bonding interaction between epinephrine and uracil by means of density functional theory calculations concerning their complexation's geometries, interaction energies, and vibrational frequencies. Geometry optimization was carried out giving 19 stable geometries of epinephrine-uracil complex with interaction energies in a range of - 21.51 to - 62.37 kJ mol-1 using the basis set superposition error (BSSE) correction. The analysis of structure and vibration shows that the hydrogen bonding elongates the length of corresponding bond O(N)-H and decreases the symmetric stretching vibrational frequency, which indicates red-shifted H-bonding interactions in all the geometries. Additionally, the analysis with theories of natural bond orbital (NBO), atoms in molecules (AIM), and the reduced density gradient (RDG) of hydrogen bonding properties and characteristics of the 19 geometries suggests that the hydrogen bonding in all the optimized structures of epinephrine-uracil complex is kind of a closed-shell interaction and mainly electrostatic dominant.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Uracila
/
Epinefrina
/
Ligação de Hidrogênio
Idioma:
En
Revista:
J Mol Model
Ano de publicação:
2019
Tipo de documento:
Article