Your browser doesn't support javascript.
loading
Construction, mechanism, and antibacterial resistance insight into polypeptide-based nanoparticles.
Zhen, Jian-Bin; Zhao, Mu-Han; Ge, Ying; Liu, Ya; Xu, Li-Wei; Chen, Cheng; Gong, Yong-Kuan; Yang, Ke-Wu.
Afiliação
  • Zhen JB; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Zhao MH; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Ge Y; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Liu Y; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Xu LW; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Chen C; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Gong YK; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
  • Yang KW; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, P. R. China. kwyang@nwu.edu.cn.
Biomater Sci ; 7(10): 4142-4152, 2019 Oct 01.
Article em En | MEDLINE | ID: mdl-31364616
The emergence of drug-resistant bacteria poses a serious threat to public health. The traditional antibiotics have specific intracellular targets and disinfect via chemical ways, which easily lead to the development of drug resistance, therefore, cationic peptides as promising antibiotic agents have attracted extensive attention due to their unique properties. Herein, we report a class of amphiphilic peptide-based pectinate polymers with primary amino groups. The polymers spontaneously self-assembled into the positively charged nanoparticles, which were evaluated and confirmed by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Biological assays revealed that the nanoparticles showed broad-spectrum antibacterial efficacy against both Gram-positive and Gram-negative bacteria, exhibiting a MIC of 16 µg mL-1 against six clinical bacteria, namely, E. faecalis, S. aureus, MRSA, VRE, P. aeruginosa, and K. pneumonia, and three bacterial strains E. coli and E. coli producing NDM-1 and ImiS, and showed a sterilization rate of 95.6% and 94.7% on S. aureus and E. coli, respectively. Importantly, the nanoparticles did not result in drug-resistance for both the normal and drug-resistant bacteria tested after 14 passages and showed low toxicity on the mouse fibroblast cells (L929). The fluorescence staining, electrical conductivity, SEM, and surface plasmon resonance (SPR) characterization suggested that the nanoparticles initially bound to the surface of the bacteria, then pierced into the membranes of the bacteria with their phenyl groups, and finally disrupted the membranes, resulting in ions leaking out and thus exhibiting broad-spectrum antibacterial efficacy. This bactericidal mechanism that the nanoparticles employed does not lead the bacteria susceptible to developing drug resistance. This study provides a promising pathway for the development of the efficient antibacterial materials.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Nanopartículas / Bactérias Gram-Negativas / Bactérias Gram-Positivas / Antibacterianos Limite: Animals Idioma: En Revista: Biomater Sci Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Nanopartículas / Bactérias Gram-Negativas / Bactérias Gram-Positivas / Antibacterianos Limite: Animals Idioma: En Revista: Biomater Sci Ano de publicação: 2019 Tipo de documento: Article